Aeromedical Fitness of Military Aircrew with Asymptomatic Coronary Artery Disease in the Republic of Singapore Air Force

MAJ(DR) DOMINIC TAN AVIATION MEDICAL OFFICER, AIR FORCE MEDICAL SERVICE REPUBLIC OF SINGAPORE AIR FORCE

Scope

Introduction

- Cardiovascular disease
- Work-health interaction
- Aeromedical risk assessment

Policy Review

- Health screening in the SAF
- Impetus and considerations
- Revised policy

Moving Forward

- Challenges
- Conclusion

INTRODUCTION

CARDIOVASCULAR CAUSES OF INCAPACITATION

Burden of Cardiovascular Disease

PILOT INCAPACITATION OCCURRENCES

Causes of pilot incapacitation and resultant duty restrictions in high capacity transport operations, 2010 to 2014.

Australian Transport Safety Bureau

Work – Health Interaction

Aeromedical Risk Assessment

Aeromedical Risk Assessment

POLICY REVIEW

HISTORY OF PATHWAY DEVELOPMENT

Health Screening Programme

Health Screening Programme

Panel III: Advanced Cardiac Investigations

IMPETUS FOR REVIEW

Increasing use of advanced cardiac investigation modalities such as CT CA

Availability of additional information on cardiovascular health

Potential flaws in utilising aggregated stenoses severity to classify CAD severity

Existing Aeromedical Standards

REPUBLIC OF SINGAPORE AIR FORCE

- Use of CT CAC to determine cardiac event risk and aeromedical disposition
- Invasive angiogram to be done only if recommended by cardiologist
- Use of aggregated lesion score to grade severity of CAD

INTERNATIONAL STANDARDS

- Risk stratification based on risk calculator KIV CT CAC
- Use of treadmill ECG or CT CAC as first line investigation for suspected CAD
- Use of aggregated lesion score to grade severity of CAD

CONSIDERATIONS

Minimise medical attrition without risk to flight safety

- Use of CT Coronary Artery Calcium (CT CAC)
 - Guide further evaluation
 - Only applicable to individuals aged 40 or older
 - No role for repeat CT CAC
- Risk Prediction

3 categories

Risk Category	CT CAC Score	Implication
Low risk (< 1%)	0 – 10	Unrestricted duties unless there are ≥ 2 cardiac risk factors
Intermediate risk	11 – 399	Proceed to CT coronary angiogram (CT CA)
High risk (> 3%)	≥ 400	Permanent restriction from duties

Intermediate Risk Category

USE OF CT CA

Pros

- Additional layer of screening for aircrew
- Increase the sensitivity of pathway in picking up silent stenosis

Cons

False positives may lead to increased referrals for cardiac catheterisations

BASED ON CT CAC

Pros

No risks from cardiac catheterisations

Cons

Unknown prevalence of silent obstructive CAD in aircrew with an abnormal treadmill exercise test and CT CAC score of 11 – 399

CLASSIFICATION OF CAD SEVERITY

CLASSIFICATION OF CAD SEVERITY

Risk Category	Invasive Angiogram Findings	Implication
No risk	No evidence of coronary artery disease	Unrestricted duties
Low risk	Single vessel disease, worst lesion not more than 50%	Unrestricted duties
Medium risk	Multi-vessel disease, worst lesion not more than 70%; Single vessel disease, worst lesion 50-70%; Any left main lesion up to 30%	Restricted to non-high G _z platforms and "as-or-with qualified co-pilot" status, or "non-critical control" duties
High risk	Any lesion more than 70%; Left main lesion more than 30%	Permanent restriction from flying duties unless stented

MOVING FORWARD

CHALLENGES

CONCLUSION

References

1. Davenport ED et al. Management of established coronary artery disease in aircrew without myocardial infarction or revascularisation. *Heart*. 2019; 105: s31-s37.

2. Davenport ED et al. Management of established coronary artery disease in aircrew with previous myocardial infarction or revascularisation. *Heart*. 2019; 105: s25-s30.

3. Fihn et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. *Circulation*. 2012; 126: 354-471

4. Gary G et al. Assessing aeromedical risk: a three-dimensional risk matrix approach. *Heart*. 2019; 105: s9-s16.

5. Gray G et al. The challenge of asymptomatic coronary artery disease in aircrew; detecting plaque before the accident. *Heart*. 2019; 105: s17-s24.

6. Nicol ED et al. An introduction to aviation cardiology. *Heart*. 2019; 105: s3-s8.

7. Plank F et al. The diagnostic and prognostic value of coronary CT angiography in asymptomatic high-risk patients: a cohort study. *Open Heart*. 2014; 1: e000096. doi:10.1136/ openhrt-2014-000096.

8. Tan SY et al. The proper use of coronary calcium score and coronary computed tomography angiography for screening asymptomatic patients with cardiovascular risk factors. *Sci Rep.* 2017; 7(1): 17653. doi: 10.1038/s41598-017-17655-w.

9. Wolk MJ et al. 2013 ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease. *Journal of the American College of Cardiology. 2013; 63*(4): 380-406.

Questions